Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Bioresour Bioprocess ; 11(1): 12, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38647836

RESUMO

The evaluation of plant-based feedstocks is an important aspect of biorefining. Nicotiana glauca is a solanaceous, non-food crop that produces large amounts of biomass and is well adapted to grow in suboptimal conditions. In the present article, compatible sequential solvent extractions were applied to N. glauca leaves to enable the generation of enriched extracts containing higher metabolite content comparing to direct leaf extracts. Typically, between 60 to 100 metabolite components were identified within the fractions. The occurrence of plant fatty acids, fatty acid alcohols, alkanes, sterols and terpenoids was detected by gas liquid chromatography-mass spectrometry (GC-MS) and metabolite identification was confirmed by comparison of physico-chemical properties displayed by available authentic standards. Collectively, co-products such waxes, oils, fermentable sugars, and terpenoids were all identified and quantified. The enriched fractions of N. glauca revealed a high level of readily extractable hydrocarbons, oils and high value co-products. In addition, the saccharification yield and cell wall composition analyses in the stems revealed the potential of the residue material as a promising lignocellulosic substrate for the production of fermentable sugars. In conclusion a multifractional cascade for valuable compounds/commodities has been development, that uses N. glauca biomass. These data have enabled the evaluation of N. glauca material as a potential feedstock for biorefining.

2.
Plant Physiol ; 194(3): 1705-1721, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37758174

RESUMO

Plants synthesize specialized metabolites to facilitate environmental and ecological interactions. During evolution, plants diversified in their potential to synthesize these metabolites. Quantitative differences in metabolite levels of natural Arabidopsis (Arabidopsis thaliana) accessions can be employed to unravel the genetic basis for metabolic traits using genome-wide association studies (GWAS). Here, we performed metabolic GWAS on seeds of a panel of 315 A. thaliana natural accessions, including the reference genotypes C24 and Col-0, for polar and semi-polar seed metabolites using untargeted ultra-performance liquid chromatography-mass spectrometry. As a complementary approach, we performed quantitative trait locus (QTL) mapping of near-isogenic introgression lines between C24 and Col-0 for specific seed specialized metabolites. Besides common QTL between seeds and leaves, GWAS revealed seed-specific QTL for specialized metabolites, indicating differences in the genetic architecture of seeds and leaves. In seeds, aliphatic methylsulfinylalkyl and methylthioalkyl glucosinolates associated with the ALKENYL HYDROXYALKYL PRODUCING loci (GS-ALK and GS-OHP) on chromosome 4 containing alkenyl hydroxyalkyl producing 2 (AOP2) and 3 (AOP3) or with the GS-ELONG locus on chromosome 5 containing methylthioalkyl malate synthase (MAM1) and MAM3. We detected two unknown sulfur-containing compounds that were also mapped to these loci. In GWAS, some of the annotated flavonoids (kaempferol 3-O-rhamnoside-7-O-rhamnoside, quercetin 3-O-rhamnoside-7-O-rhamnoside) were mapped to transparent testa 7 (AT5G07990), encoding a cytochrome P450 75B1 monooxygenase. Three additional mass signals corresponding to quercetin-containing flavonols were mapped to UGT78D2 (AT5G17050). The association of the loci and associating metabolic features were functionally verified in knockdown mutant lines. By performing GWAS and QTL mapping, we were able to leverage variation of natural populations and parental lines to study seed specialized metabolism. The GWAS data set generated here is a high-quality resource that can be investigated in further studies.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Sementes/genética , Mapeamento Cromossômico , Flavonoides , 2-Isopropilmalato Sintase , Proteínas de Arabidopsis/genética
4.
Plant Cell Physiol ; 64(12): 1523-1533, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37572104

RESUMO

Exposure to UV-B radiation, an intrinsic component of solar light, is detrimental to all living organisms as chromophore units of DNA, RNA and proteins readily absorb high-energy photons. Indirect damage to the same molecules and lipids is mediated by elevated reactive oxygen species (ROS) levels, a side effect of exposure to UV-B stress. To protect themselves from UV-B radiation, plants produce phytochemical sunscreens, among which flavonoids have shown to be particularly effective. The core aglycone of flavonoid molecules is subjected to chemical decoration, such as glycosylation and acylation, further improving sunscreen properties. In particular, acylation, which adds a phenolic ring to flavonoid molecules, enhances the spectral absorption of UV-A and UV-B rays, providing to this class of compounds exceptional shielding power. In this study, we comprehensively analyzed the responses to UV-B radiation in four Brassicaceae species, including Arabidopsis thaliana, Brassica napus, Brassica oleracea, and Brassica rapa. Our study revealed a complete reprogramming of the central metabolic pathway in response to UV-B radiation characterized by increased production of functional precursors of specialized metabolites with UV-B shielding properties, indicating a targeted effort of plant metabolism to provide increased protection. The analysis of specialized metabolites and transcripts revealed the activation of the phenylpropanoid-acetate pathway, leading to the production of specific classes of flavonoids and a cross-species increase in phenylacylated-flavonoid glucosides with synapoyl glycoside decorations. Interestingly, our analysis also revealed that acyltransferase genes of the class of serine carboxypeptidase-like (SCPLs) proteins are costitutively expressed, but downregulated in response to UV-B radiation, possibly independently of the ELONGATED HYPOCOTYL 5 (HY5) signaling pathway.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/metabolismo , Flavonoides/metabolismo , Arabidopsis/genética , Raios Ultravioleta , Glicosídeos/metabolismo , Plantas/metabolismo
5.
Curr Opin Plant Biol ; 75: 102427, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517136

RESUMO

Functional genomics approaches with comparative omics analyses of wild-accessions and cultivars/wild species, as well as comparative genomic analyses in plant species focusing on gene clusters, have successfully detected key metabolic polymorphisms in plant specialized metabolism. In recent decades, (i) intra-species specific metabolic polymorphisms, (ii) new functionalization of tandem duplicated genes, and (iii) metabolic gene clusters were found as the main factors creating metabolic diversity of specialized metabolites in plants. However, given findings aware us that the identification of genes in plant specialized metabolism requires strategic approaches depending on the target metabolic pathways. The increasing availability of plant genome sequences and transcriptome data has facilitated inter-specific comparative analyses, including genomic analysis and gene co-expression network analysis. Here, we introduce functional genomics approaches with the integration of inter-/intra-species comparative metabolomics, their key roles in providing genomic signatures of metabolic evolution, and discuss future prospects of functional genomics on plant specialized metabolism.


Assuntos
Genômica , Plantas , Plantas/genética , Plantas/metabolismo , Metabolômica , Genoma de Planta/genética , Transcriptoma
6.
Plant J ; 115(4): 1021-1036, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37272491

RESUMO

The process of crop domestication leads to a dramatic reduction in the gene expression associated with metabolic diversity. Genes involved in specialized metabolism appear to be particularly affected. Although there is ample evidence of these effects at the genetic level, a reduction in diversity at the metabolite level has been taken for granted despite having never been adequately accessed and quantified. Here we leveraged the high coverage of ultra high performance liquid chromatography-high-resolution mass spectrometry based metabolomics to investigate the metabolic diversity in the common bean (Phaseolus vulgaris). Information theory highlights a shift towards lower metabolic diversity and specialization when comparing wild and domesticated bean accessions. Moreover, molecular networking approaches facilitated a broader metabolite annotation than achieved to date, and its integration with gene expression data uncovers a metabolic shift from specialized metabolism towards central metabolism upon domestication of this crop.


Assuntos
Phaseolus , Phaseolus/genética , Phaseolus/metabolismo , Domesticação , Teoria da Informação , Metabolômica
7.
Plant Physiol ; 190(1): 250-266, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35512210

RESUMO

Although multiple vital genes with strong effects on the tomato (Solanum lycopersicum) ripening process have been identified via the positional cloning of ripening mutants and cloning of ripening-related transcription factors (TFs), recent studies suggest that it is unlikely that we have fully characterized the gene regulatory networks underpinning this process. Here, combining comparative transcriptomics and expression QTLs, we identified 16 candidate genes involved in tomato fruit ripening and validated them through virus-induced gene silencing analysis. To further confirm the accuracy of the approach, one potential ripening regulator, SlWD40 (WD-40 repeats), was chosen for in-depth analysis. Co-expression network analysis indicated that master regulators such as RIN (ripening inhibitor) and NOR (nonripening) as well as vital TFs including FUL1 (FRUITFUL1), SlNAC4 (NAM, ATAF1,2, and CUC2 4), and AP2a (Activating enhancer binding Protein 2 alpha) strongly co-expressed with SlWD40. Furthermore, SlWD40 overexpression and RNAi lines exhibited substantially accelerated and delayed ripening phenotypes compared with the wild type, respectively. Moreover, transcriptome analysis of these transgenics revealed that expression patterns of ethylene biosynthesis genes, phytoene synthase, pectate lyase, and branched chain amino transferase 2, in SlWD40-RNAi lines were similar to those of rin and nor fruits, which further demonstrated that SlWD40 may act as an important ripening regulator in conjunction with RIN and NOR. These results are discussed in the context of current models of ripening and in terms of the use of comparative genomics and transcriptomics as an effective route for isolating causal genes underlying differences in genotypes.


Assuntos
Solanum lycopersicum , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
8.
Plant Physiol ; 190(1): 319-339, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35640120

RESUMO

During the maturation phase of flower development, the onset of anthesis visibly marks the transition from buds to open flowers, during which petals stretch out, nectar secretion commences, and pollination occurs. Analysis of the metabolic changes occurring during this developmental transition has primarily focused on specific classes of metabolites, such as pigments and scent emission, and far less on the whole network of primary and secondary metabolites. To investigate the metabolic changes occurring at anthesis, we performed multi-platform metabolomics alongside RNA sequencing in individual florets harvested from the main inflorescence of Arabidopsis (Arabidopsis thaliana) ecotype Col-0. To trace metabolic fluxes at the level of the whole inflorescence and individual florets, we further integrated these studies with radiolabeled experiments. These extensive analyses revealed high-energy-level metabolism and transport of carbohydrates and amino acids, supporting intense metabolic rearrangements occurring at the time of this floral transition. These comprehensive data are discussed in the context of our current understanding of the metabolic shifts underlying flower opening. We envision that this analysis will facilitate the introgression of floral metabolic traits promoting pollination in crop species for which a comprehensive knowledge of flower metabolism is still limited.


Assuntos
Flores , Polinização , Inflorescência , Odorantes , Reprodução
9.
Plant J ; 110(4): 1082-1096, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247019

RESUMO

Jasmonoyl-isoleucine (JA-Ile) is a key signaling molecule that activates jasmonate-regulated flower development and the wound stress response. For years, JASMONATE RESISTANT1 (JAR1) has been the sole jasmonoyl-amino acid synthetase known to conjugate jasmonic acid (JA) to isoleucine, and the source of persisting JA-Ile in jar1 knockout mutants has remained elusive until now. Here we demonstrate through recombinant enzyme assays and loss-of-function mutant analyses that AtGH3.10 functions as a JA-amido synthetase. Recombinant AtGH3.10 could conjugate JA to isoleucine, alanine, leucine, methionine, and valine. The JA-Ile accumulation in the gh3.10-2 jar1-11 double mutant was nearly eliminated in the leaves and flower buds while its catabolism derivative 12OH-JA-Ile was undetected in the flower buds and unwounded leaves. Residual levels of JA-Ile, JA-Ala, and JA-Val were nonetheless detected in gh3.10-2 jar1-11, suggesting the activities of similar promiscuous enzymes. Upon wounding, the accumulation of JA-Ile and 12OH-JA-Ile and the expression of JA-responsive genes OXOPHYTODIENOIC ACID REDUCTASE3 and JASMONATE ZIM-DOMAIN1 observed in WT, gh3.10-1, and jar1-11 leaves were effectively abolished in gh3.10-2 jar1-11. Additionally, an increased proportion of undeveloped siliques associated with retarded stamen development was observed in gh3.10-2 jar1-11. These findings conclusively show that AtGH3.10 contributes to JA-amino acid biosynthesis and functions partially redundantly with AtJAR1 in sustaining flower development and the wound stress response in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/metabolismo , Ligases/genética , Ligases/metabolismo , Oxilipinas/metabolismo
10.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214897

RESUMO

The O-methylation of specialized metabolites in plants is a unique decoration that provides structural and functional diversity of the metabolites with changes in chemical properties and intracellular localizations. The O-methylation of flavonoids, which is a class of plant specialized metabolites, promotes their antimicrobial activities and liposolubility. Flavonoid O-methyltransferases (FOMTs), which are responsible for the O-methylation process of the flavonoid aglycone, generally accept a broad range of substrates across flavones, flavonols and lignin precursors, with different substrate preferences. Therefore, the characterization of FOMTs with the physiology roles of methoxylated flavonoids is useful for crop improvement and metabolic engineering. In this review, we summarized the chemodiversity and physiology roles of methoxylated flavonoids, which were already reported, and we performed a cross-species comparison to illustrate an overview of diversification and conserved catalytic sites of the flavonoid O-methyltransferases.

11.
J Nat Med ; 76(1): 306-313, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34661849

RESUMO

Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient's affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107-114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients' constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho.


Assuntos
Bupleurum , Medicamentos de Ervas Chinesas , Quimioinformática , Quimiometria , Humanos , Japão , Aprendizado de Máquina , Espectrometria de Massas , Medicina Kampo
12.
Plant Cell Physiol ; 63(1): 120-134, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34665867

RESUMO

The bZIP transcription factor (TF) SlTGA2.2 was previously highlighted as a possible hub in a network regulating fruit growth and transition to ripening (maturation phase). It belongs to a clade of TFs well known for their involvement in the regulation of the salicylic acid-dependent systemic acquired resistance. To investigate if this TGA TF plays a role in tomato fruit growth and maturation, we took advantage of the fruit-specific SlPPC2 promoter (PPC2pro) to target the expression of a SlTGA2.2-SRDX chimeric repressor in a developmental window restricted to early fruit growth and maturation. Here, we show that this SlTGA2.2-SRDX repressor alters early fruit development and metabolism, including chloroplast number and structure, considerably extends the time necessary to reach the mature green stage and slows down fruit ripening. RNA sequencing and plant hormone analyses reveal that PPC2pro:SlTGA2.2-SRDX fruits are maintained in an immature stage as long as PPC2pro is active, through early modifications of plant hormonal signaling and down-regulation of MADS-RIN and NAC-NOR ripening regulators. Once PPC2pro becomes inactive and therefore SlTGA2.2-SRDX expression is reduced, ripening can proceed, albeit at a slower pace than normal. Altogether, this work emphasizes the developmental continuum between fruit growth, maturation and ripening and provides a useful tool to alter and study the molecular bases of tomato fruit transition to ripening.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Filogenia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
13.
Plant Physiol ; 187(4): 2419-2434, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618078

RESUMO

Sulfur deficiency-induced proteins SDI1 and SDI2 play a fundamental role in sulfur homeostasis under sulfate-deprived conditions (-S) by downregulating glucosinolates. Here, we identified that besides glucosinolate regulation under -S, SDI1 downregulates another sulfur pool, the S-rich 2S seed storage proteins in Arabidopsis (Arabidopsis thaliana) seeds. We identified that MYB28 directly regulates 2S seed storage proteins by binding to the At2S4 promoter. We also showed that SDI1 downregulates 2S seed storage proteins by forming a ternary protein complex with MYB28 and MYC2, another transcription factor involved in the regulation of seed storage proteins. These findings have significant implications for the understanding of plant responses to sulfur deficiency.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sementes/metabolismo , Sulfatos/metabolismo , Proteínas de Arabidopsis/metabolismo , Sementes/química
14.
Front Plant Sci ; 12: 687799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220909

RESUMO

Durian is an economically important fruit of Southeast Asia. There is, however, a lack of in-depth information on the alteration of its metabolic networks during ripening. Here, we annotated 94 ripening-associated metabolites from the pulp of durian cv. Monthong fruit at unripe and ripe stages, using capillary electrophoresis- and gas chromatography- time-of-flight mass spectrometry, specifically focusing on taste-related metabolites. During ripening, sucrose content increased. Change in raffinose-family oligosaccharides are reported herein for the first time. The malate and succinate contents increased, while those of citrate, an abundant organic acid, were unchanged. Notably, most amino acids increased, including isoleucine, leucine, and valine, whereas aspartate decreased, and glutamate was unchanged. Furthermore, transcriptomic analysis was performed to analyze the dynamic changes in sugar metabolism, glycolysis, TCA cycle, and amino acid pathways to identify key candidate genes. Taken together, our results elucidate the fundamental taste-related metabolism of durian, which can be exploited to develop durian metabolic and genetic markers in the future.

15.
Nat Methods ; 18(7): 747-756, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239102

RESUMO

Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas/normas , Metabolômica/normas , Distribuição Aleatória , Manejo de Espécimes , Fluxo de Trabalho
16.
Plant Physiol ; 185(3): 857-875, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793871

RESUMO

The emergence of type III polyketide synthases (PKSs) was a prerequisite for the conquest of land by the green lineage. Within the PKS superfamily, chalcone synthases (CHSs) provide the entry point reaction to the flavonoid pathway, while LESS ADHESIVE POLLEN 5 and 6 (LAP5/6) provide constituents of the outer exine pollen wall. To study the deep evolutionary history of this key family, we conducted phylogenomic synteny network and phylogenetic analyses of whole-genome data from 126 species spanning the green lineage including Arabidopsis thaliana, tomato (Solanum lycopersicum), and maize (Zea mays). This study thereby combined study of genomic location and context with changes in gene sequences. We found that the two major clades, CHS and LAP5/6 homologs, evolved early by a segmental duplication event prior to the divergence of Bryophytes and Tracheophytes. We propose that the macroevolution of the type III PKS superfamily is governed by whole-genome duplications and triplications. The combined phylogenetic and synteny analyses in this study provide insights into changes in the genomic location and context that are retained for a longer time scale with more recent functional divergence captured by gene sequence alterations.


Assuntos
Aciltransferases/metabolismo , Arabidopsis/metabolismo , Policetídeo Sintases/metabolismo , Solanum lycopersicum/metabolismo , Zea mays/metabolismo , Aciltransferases/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Filogenia , Policetídeo Sintases/genética , Zea mays/genética
17.
Front Plant Sci ; 12: 642581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889165

RESUMO

Nuts, such as peanut, almond, and chestnut, are valuable food crops for humans being important sources of fatty acids, vitamins, minerals, and polyphenols. Polyphenols, such as flavonoids, stilbenoids, and hydroxycinnamates, represent a group of plant-specialized (secondary) metabolites which are characterized as health-beneficial antioxidants within the human diet as well as physiological stress protectants within the plant. In food chemistry research, a multitude of polyphenols contained in culinary nuts have been studied leading to the identification of their chemical properties and bioactivities. Although functional elucidation of the biosynthetic genes of polyphenols in nut species is crucially important for crop improvement in the creation of higher-quality nuts and stress-tolerant cultivars, the chemical diversity of nut polyphenols and the key biosynthetic genes responsible for their production are still largely uncharacterized. However, current technical advances in whole-genome sequencing have facilitated that nut plant species became model plants for omics-based approaches. Here, we review the chemical diversity of seed polyphenols in majorly consumed nut species coupled to insights into their biological activities. Furthermore, we present an example of the annotation of key genes involved in polyphenolic biosynthesis in peanut using comparative genomics as a case study outlining how we are approaching omics-based approaches of the nut plant species.

18.
Front Plant Sci ; 12: 640141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868339

RESUMO

Plants produce a variety of floral specialized (secondary) metabolites with roles in several physiological functions, including light-protection, attraction of pollinators, and protection against herbivores. Pigments and volatiles synthesized in the petal have been focused on and characterized as major chemical factors influencing pollination. Recent advances in plant metabolomics have revealed that the major floral specialized metabolites found in land plant species are hydroxycinnamates, phenolamides, and flavonoids albeit these are present in various quantities and encompass diverse chemical structures in different species. Here, we analyzed numerous floral specialized metabolites in 20 different Brassicaceae genotypes encompassing both different species and in the case of crop species different cultivars including self-compatible (SC) and self-incompatible (SI) species by liquid chromatography-mass spectrometry (LC-MS). Of the 228 metabolites detected in flowers among 20 Brassicaceae species, 15 metabolite peaks including one phenylacyl-flavonoids and five phenolamides were detected and annotated as key metabolites to distinguish SC and SI plant species, respectively. Our results provide a family-wide metabolic framework and delineate signatures for compatible and incompatible genotypes thereby providing insight into evolutionary aspects of floral metabolism in Brassicaceae species.

19.
PLoS Genet ; 17(4): e1009537, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901177

RESUMO

Morphogenesis and differentiation are important stages in organ development and shape determination. However, how they are balanced and tuned during development is not fully understood. In the compound leaved tomato, an extended morphogenesis phase allows for the initiation of leaflets, resulting in the compound form. Maintaining a prolonged morphogenetic phase in early stages of compound-leaf development in tomato is dependent on delayed activity of several factors that promote differentiation, including the CIN-TCP transcription factor (TF) LA, the MYB TF CLAU and the plant hormone Gibberellin (GA), as well as on the morphogenesis-promoting activity of the plant hormone cytokinin (CK). Here, we investigated the genetic regulation of the morphogenesis-differentiation balance by studying the relationship between LA, CLAU, TKN2, CK and GA. Our genetic and molecular examination suggest that LA is expressed earlier and more broadly than CLAU and determines the developmental context of CLAU activity. Genetic interaction analysis indicates that LA and CLAU likely promote differentiation in parallel genetic pathways. These pathways converge downstream on tuning the balance between CK and GA. Comprehensive transcriptomic analyses support the genetic data and provide insights into the broader molecular basis of differentiation and morphogenesis processes in plants.


Assuntos
Diferenciação Celular/genética , Citocininas/genética , Giberelinas/metabolismo , Morfogênese/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
20.
Plant Cell Physiol ; 62(3): 502-514, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-33544865

RESUMO

Plants are constantly exposed to stressful environmental conditions. Plant stress reactions were mainly investigated for single stress factors. However, under natural conditions plants may be simultaneously exposed to different stresses. Responses to combined stresses cannot be predicted from the reactions to the single stresses. Flavonoids accumulate in Arabidopsis thaliana during exposure to UV-A, UV-B or cold, but the interactions of these factors on flavonoid biosynthesis were unknown. We therefore investigated the interaction of UV radiation and cold in regulating the expression of well-characterized stress-regulated genes, and on transcripts and metabolites of the flavonoid biosynthetic pathway in 52 natural Arabidopsis accessions that differ widely in their freezing tolerance. The data revealed interactions of cold and UV on the regulation of stress-related and flavonoid biosynthesis genes, and on flavonoid composition. In many cases, plant reactions to a combination of cold and UV were unique under combined stress and not predictable from the responses to the single stresses. Strikingly, all correlations between expression levels of flavonoid biosynthesis genes and flavonol levels were abolished by UV-B exposure. Similarly, correlations between transcript levels of flavonoid biosynthesis genes or flavonoid contents, and freezing tolerance were lost in the presence of UV radiation, while correlations with the expression levels of cold-regulated genes largely persisted. This may indicate different molecular cold acclimation responses in the presence or absence of UV radiation.


Assuntos
Arabidopsis/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Variação Genética/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Congelamento , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Estresse Fisiológico , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...